Tuskegee University College of Engineering Doctor of Philosophy (Ph.D.) in Materials Science and Engineering

Contact Information:	Dr. Mahesh Hosur, Head; hosur@mytu.tuskegee.edu; Ph.: +1 (334) 724-4220
	Ms. Felicia Jenkins, Program Coordinator; fjenkins@mytu.tuskegee.edu; Ph.: +1 (334) 727-8802

Degrees Offered: Doctor of Philosophy (Ph.D.) in Materials Science and Engineering, Dissertation

The Department of Materials Science and Engineering at Tuskegee University produces graduates who can be successful in industry and national laboratories. We have assembled a multidisciplinary group of faculty members with expertise in various aspects of synthesis, processing, modeling and characterization of advanced materials that may be used for military, industrial, agricultural and healthcare applications.

* For additional information please refer to the Graduate Handbook.

Admission Requirements

Applicants must have a Master's degree in Materials Science and Engineering or related disciplines from college or university to be considered for the Ph.D. program in Materials Science and Engineering Prerequisite academic work should provide evidence that the application shall be able to pursue the graduate course effectively Applicants must also have a cumulative GPA of 3.0 or better. The minimum acceptable combined GRE score is 1000 (old) or 300 (new). Official Transcript from all colleges/universities attended (International Students must have transcripts translated through World Education Services -WES) Completed Application along with the required amount of application fees 3 Letters of Recommendation Statement of Purpose GRE Scores Financial Affidavit (International Students –only) Test of English as Foreign Language (TOEFL) Scores (International students only)

Advisory Committee

During the first year of his/her study in the Ph.D. program, the student and his/her Major Professor must recommend to the Head of the Department the student's Advisory Committee consisting of a minimum of six members including the Major Professor, the Head of the Department and two members from outside of Tuskegee University for approval. The Advisory Committee shall also serve as the Examination Committee.

Core Courses (12 credits): Required for All Students in the Ph.D. program

MSEG 0601: Physics of Materials – 3credits MSEG 0603: Polymer Physics – 3 credits MSEG 0604: Materials Properties and Characterization – 3 credits MSEG 0605: Ethics in Research – 1 credit MSEG 0606: Literature Search and Technical Writing – 2 credits

Elective Courses (6 credits): Determined by Student's Major Professor

Elective courses may be any Ph.D. level courses offered at Tuskegee University or elsewhere. Approval of the Major Professor is necessary for a student to sign up for electives.

Transfer Credits

The student's Advisory Committee may recommend transfer credits for graduate courses taken by the student at any other institution. Transfer credits may be recommended under both core and elective categories.

MSEG 0800	Research. CR. 24.				
	List of Elective Courses				
MSEG 0601	PHYSICS OF MATERIALS. CR. 3. To gain an understanding of the nature of materials based on the				
	physical principles on which the properties of materials depend. The basic relationships introduced in				
	undergraduate physics and chemistry courses are extended using the concepts of quantum mechanics to relate				
	the properties of materials to their internal structure and external environment. Optical, electrical, thermal				
	and magnetic properties of metals, semiconductors and insulators will be covered.				
MSEG 0603					
	classification of polymers, molecular sizes, polymer blends, morphology, time-independent elasticity, linear				
	viscoelasticity and yield, and yield and fracture polymers.				
MSEG 0604	MATERIALS PROPERTIES AND CHARACTERIZATION. CR. 3. A multidisciplinary course offering				
	a practical hands-on experience with various analytical equipment and analysis of advanced composite				
	materials including nanomaterials. Focus on sample preparation, principles and applications of various				
	microscopy, thermal and mechanical methods. Covered topics include AFM, SEM, TEM, EDX, X-ray,				
	TGA, DSC, DMA, TMA, tensile, compression and flexure tests.				
MSEG 0605	RESEARCH ETHICS . CR. 1. The course will provide students an understanding of ethical issues in				
	scientific research. Moral complexities in the engineering profession will be highlighted. Case studies will				
	be used to illustrate how to analyze and resolve identified ethical issues.				
MSEG 0606	LITERATURE SEARCH AND TECHNICAL WRITING. Cr. 2. To prepare the MSEG Ph.D. and MS				
	candidates for writing professional papers, making presentations, and preparing theses/dissertations. To				
	accomplish this objective, the literature related to material science and engineering is surveyed. The tools for				
	searching the material science and engineering literature are explored. The instructors will critically analyze				
MCEC 0/07	abstracts, formal papers and theses/dissertations related writings prepared by the students.				
MSEG 0607	PROPOSAL DEVELOPMENT . Cr. 3. In this course emphasis will be placed on technical research				
	proposal writing. Focus will be placed on solicitation search, critical review of the literature on the research				
	subject, development of the proposed research idea, highlights of the proposed research innovation,				
	development of research work plans and tasks, projected outcome and deliverables, and cost proposal				
MSEG 0610	development. Advanced Materials Science and Engineering. Cr. 3. This course introduces students coming from				
MISEO 0010	various disciplines to materials science and engineering. Different types of advanced materials, modern				
	material needs, processing techniques, properties and application will be discussed. Material degradation				
	upon exposure to various environments, proper selection of material and design consideration, economic and				
	recycling issues of materials will be taught. <i>Prerequisite: MENG 0318: Materials Engineering</i>				
MSEG 0611	MOLECULAR MODELING OF POLYMERS AND NANOCOMPOSITES. Cr. 3. To introduce				
	students to the fundamentals of molecular modeling and to put that knowledge to use in a class project. Mini-				
	projects and homework sets will be assigned as needed. Mini-projects require computer calculations.				
	Homework sets will be drawn from the text and from literature sources.				
MSEG 0612					

MSEG 0612

diffusion, atomic theory of diffusion kirkendall effect, Darken equations, high diffusivity phenomenon and
chemical reaction kinetics, pertinent to transformations.
THEORY OF ELASTICITY. CR. 3. Stress-Strain relations, strain energy, general methods of elasticity,
reciprocal theorems, energy methods and variational principles. The Rayleigh-Ritz and Galerkin methods.
Finite difference and relaxation method. Tensor application. Prerequisites: MENG 0416 and MATH 0461.
Graduate Standing.
POLYMER CHEMISTRY. CR. 3. A survey course on polymeric materials. Areas covered are the
synthesis and reactions of polymers, thermodynamics and kinetics of polymerization, the physical
characterization of polymers and the fabrication, testing and uses of polymers. These topics are integrated
into both the lecture and the laboratory. Prerequisites: Organic Chemistry 321 & 323; Physical Chemistry
402 & 404
THERMODYNAMICS OF MATERIALS SYSTEMS. CR. 3. The laws of thermodynamics applied to
the stability of material phases, crystal imperfections, solubility, oxidation, surface and interface energy, and
transformation. Application of the laws of Thermodynamics to Material Systems: chemical reactions, phase
equilibria and transformations, oxidation, theoretical phase diagram generation and non-ideal solution theory.
(Prerequisite: MSEG 0625)
FRACTURE MECHANICS. CR. 3. Basic principles and applications of fracture mechanics by integrating
aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic-
aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic- plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer
aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic- plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416.</i>
aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic- plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416.</i> FINITE ELEMENT METHOD. Cr. 3. Principles of finite element analysis, variation principles,
aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic- plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416.</i> FINITE ELEMENT METHOD. Cr. 3. Principles of finite element analysis, variation principles, displacement polynomials and shape functions, element family, application to 2D and 3D continuum
aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic- plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416.</i> FINITE ELEMENT METHOD. Cr. 3. Principles of finite element analysis, variation principles, displacement polynomials and shape functions, element family, application to 2D and 3D continuum problems, application to thermal and fluid flow problems, computer program development. <i>Prerequisites:</i>
aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic- plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416</i> . FINITE ELEMENT METHOD . Cr. 3. Principles of finite element analysis, variation principles, displacement polynomials and shape functions, element family, application to 2D and 3D continuum problems, application to thermal and fluid flow problems, computer program development. <i>Prerequisites:</i> <i>Graduate standing and instructor's approval.</i>
 aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic-plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416</i>. FINITE ELEMENT METHOD. Cr. 3. Principles of finite element analysis, variation principles, displacement polynomials and shape functions, element family, application to 2D and 3D continuum problems, application to thermal and fluid flow problems, computer program development. <i>Prerequisites: Graduate standing and instructor's approval.</i> MICROSTRUCTURAL ANALYSIS OF MATERIALS. Cr. 3. To provide an integrated treatment of the
 aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic-plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416</i>. FINITE ELEMENT METHOD. Cr. 3. Principles of finite element analysis, variation principles, displacement polynomials and shape functions, element family, application to 2D and 3D continuum problems, application to thermal and fluid flow problems, computer program development. <i>Prerequisites: Graduate standing and instructor's approval.</i> MICROSTRUCTURAL ANALYSIS OF MATERIALS. Cr. 3. To provide an integrated treatment of the science of microstructural analysis which emphasizes the interaction of the specimen with the electron beam
 aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic-plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. <i>Prerequisite: MENG 0416</i>. FINITE ELEMENT METHOD. Cr. 3. Principles of finite element analysis, variation principles, displacement polynomials and shape functions, element family, application to 2D and 3D continuum problems, application to thermal and fluid flow problems, computer program development. <i>Prerequisites: Graduate standing and instructor's approval.</i> MICROSTRUCTURAL ANALYSIS OF MATERIALS. Cr. 3. To provide an integrated treatment of the

	and physics of operation of Si high power devices, SiC high-power and high-temperature devices, advances
	in GaN device structures. A comparative study of advanced semiconductor materials and their processing
	technologies.
MSEG 0647	SPECIAL TOPICS IN ADVANCED SEMICONDUCTOR DEVICES. CR. 3. Advanced bipolar devices
	and fabrication technology, heterojunction bipolar transistors, advanced/MOS devices the BICMOS process.
MSEG 0663	SPECIAL FUNCTIONS. CR. 3. Infinite series of functions, improper integrals. Gamma function, beta
	function, digamma and polygamma functions. Error function and related functions. Elliptic integrals.
	Legendre polynomials, Legendre series and theory conveyance. Hermite polynomials, Laguerre
	polynomials, Bessel functions of the first kind. Integrals of Bessel function. Orthogonality of Bessel
	functions and recurrence formulas.
MSEG 0690	SPECIAL TOPICS . Cr. 3. Advanced topics in materials science and engineering (prerequisite: Graduate
	standing and approval of major professor and instructor).
MSEG 0801	CONTINUOUS REGISTRATION. Cr. 0.
MSEG 0802	CANDIDATE FOR DEGREE. Cr. 0.

List of Key Graduate Faculty Members				
Mahesh Hosur, Ph.D.	334-724-4220	hosur@mytu.tuskegee.edu		
Vijaya Rangari, Ph.D.	334-724-4875	rangariv@mytu.tuskegee.edu		
Shaik Zainuddin, Ph.D.	334-724-4222	shaik.zainuddin@mytu.tuskegee.edu		
Alfred Tcherbi-Narteh, Ph.D.	334-724-4475	atcherbi-narteh@mytu.tuskegee.edu		
Hadiyah-Nicole Green, Ph.D.	334-724-4307	hgreen@mytu.tuskegee.edu		
Heshmat Aglan, Ph.D.	334-727-8857	aglanh@mytu.tuskegee.edu		
Michael Curry, Ph.D.	334-724-4489	mcurry@mytu.tuskegee.edu		
Adriane Ludwick, Ph.D.	334-524-9855	aludwick@mytu.tuskegee.edu		
Pradosh Ray, Ph.D.	334-727-8920	pkray@mytu.tuskegee.edu		
Melissa Reeves, Ph.D.	334-727-8237	mreeves@mytu.tuskegee.edu		
Temesgen Samuel, Ph.D.	334-724-4547/4671	tsamuel@mytu.tuskegee.edu		
Tamara Floyd-Smith, Ph.D.	334-727-8975	tfloyd@mytu.tuskegee.edu		
Clayton, Yates, Ph.D.	334-727-8949	cyates@mytu.tuskegee.edu		

Additional details that are not shown in this handout may be found in the Bulletin of the Department of Materials Science and Engineering, the TU's Graduate Handbook and website.